Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not β-cell function in humans.
نویسندگان
چکیده
BACKGROUND Plasma phospholipid concentrations of trans-palmitoleic acid (trans-16:1n-7), a biomarker of dairy fat intake, are inversely associated with incident type 2 diabetes in 2 US cohorts. OBJECTIVE The objective was to investigate whether the intake of trans-16:1n-7 in particular, or dairy fat in general, is associated with glucose tolerance and key factors determining glucose tolerance. DESIGN A cross-sectional investigation was undertaken in 17 men and women with nonalcoholic fatty liver disease and 15 body mass index (BMI)- and age-matched controls. The concentrations of trans-16:1n-7 and 2 other biomarkers of dairy fat intake, 15:0 and 17:0, were measured in plasma phospholipids and free fatty acids (FFAs). Liver fat was estimated by computed tomography-derived liver-spleen ratio. Intravenous-glucose-tolerance tests and oral-glucose-tolerance test (OGTT) and hyperinsulinemic-euglycemic clamps were performed to assess β-cell function and hepatic and systemic insulin sensitivity. RESULTS In multivariate analyses adjusted for age, sex, and BMI, phospholipid 17:0, phospholipid trans-16:1n-7, FFA 15:0, and FFA 17:0 were inversely associated with fasting plasma glucose, the area under the curve for glucose during an OGTT, and liver fat. Phospholipid trans-16:1n-7 was also positively associated with hepatic and systemic insulin sensitivity. None of the biomarkers were associated with β-cell function. The associations between dairy fat intake and glucose tolerance were attenuated by adjusting for insulin sensitivity or liver fat, but strengthened by adjusting for β-cell function. CONCLUSION Although we cannot rule out reverse causation, these data support the hypothesis that dairy fat improves glucose tolerance, possibly through a mechanism involving improved hepatic and systemic insulin sensitivity and reduced liver fat.
منابع مشابه
Metabolic Effects of Chronic Cannabis Smoking
OBJECTIVE We examined if chronic cannabis smoking is associated with hepatic steatosis, insulin resistance, reduced β-cell function, or dyslipidemia in healthy individuals. RESEARCH DESIGN AND METHODS In a cross-sectional, case-control study, we studied cannabis smokers (n = 30; women, 12; men, 18; 27 ± 8 years) and control subjects (n = 30) matched for age, sex, ethnicity, and BMI (27 ± 6). ...
متن کاملComparison of Liver Fat Indices for the Diagnosis of Hepatic Steatosis and Insulin Resistance
CONTEXT Hepatic steatosis, defined as increased hepatocellular lipid content (HCL), associates with visceral obesity and glucose intolerance. As exact HCL quantification by 1H-magnetic resonance spectroscopy (1H-MRS) is not generally available, various clinical indices are increasingly used to predict steatosis. OBJECTIVE The purpose of this study was to test the accuracy of NAFLD liver fat s...
متن کاملHepatic ABCA1 expression improves β-cell function and glucose tolerance.
Low HDL is a risk factor for the development of type 2 diabetes. Hepatic ABCA1 is the rate-limiting protein in HDL biogenesis, and mice lacking hepatic ABCA1 (ABCA1(-l/-l)) have very low plasma HDL concentrations. To investigate the role of hepatic ABCA1 in glucose tolerance and β-cell function, we used ABCA1(-l/-l) mice, which showed impaired glucose tolerance without changes in insulin sensit...
متن کاملJerusalem artichoke and chungkookjang additively improve insulin secretion and sensitivity in diabetic rats
Jerusalem artichoke (Helianthus tuberosus Linne, HTL) and chungkookjang (CKJ; fermented soybeans) both modulate energy and glucose metabolism. However, the mechanism and their additive effects are unknown. We investigated whether the consumption of HTL and CKJ altered insulin sensitivity, insulin secretion capacity and β-cell survival in type 2 diabetic animals. Rats were divided into partially...
متن کاملEvaluation of Diabetogenic Mechanism of High Fat Diet in Combination with Arsenic Exposure in Male Mice
Obesity is a main reason of type 2 diabetes and also chronic exposure to arsenic (As)can produce diabetic symptoms. In previous studies, the association between high-fat dietand arsenic in the incidence of diabetes was found, but the role of beta cells activity, livermitochondrial oxidative stress, and hepatic enzymes (leptin, adiponectin and beta amylase)was unclear. Thus, present study was co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of clinical nutrition
دوره 99 6 شماره
صفحات -
تاریخ انتشار 2014